Die polareuklidische Geometrie setzt der Perspektive der unendlichfernen Peripherie bei der gewohnten euklidischen Betrachtung eine zweite entgegen, die sich auf einen Bezugspunkt, ein absolutes Zentrum stützt. Die beiden komplementären Raumbeschreibungen erweisen sich als dual zueinander im Sinne des Dualitätsprinzips der projektiven Geometrie, das auch in der polareuklidischen Geometrie gilt.
Die Darstellung setzt keine speziellen Fachkenntnisse voraus, alles wird auch für Laien verständlich erklärt und anhand von vielen Abbildungen und Anwendungsbeispielen erläutert. An die Stelle strenger mathematischer Beweise treten anschauliche Begründungen. Koordinaten, Formalismus und Abstraktion werden vermieden. Fachmathematiker finden im Text weiterführende Hinweise und im Anhang eine kurze Zusammenfassung der mathematischen Konstruktion.
Der Autor
Immo Diener studierte Mathematik, Physik und Astronomie in Darmstadt und Göttingen. Nach Promotion und Habilitation forschte er zunächst über Diskrete Mathematik, Approximationstheorie und Globale Optimierung und begann dann, die polareuklidische Geometrie weiterzuentwickeln.
Inhaltsverzeichnis
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Polareuklidische Geometrie" und helfen Sie damit anderen bei der Kaufentscheidung.