". . . Dieses Buch bietet sich als sehr empfehlenswerte Einführung in die algebraische Topolige an und eignet sich sowohl zum Selbststudium als auch zum Aufbau einer Lehrveranstaltung. . . ." G. Lettl. Internationale Mathematische Nachrichten, Wien
Inhaltsverzeichnis
I Geometrisch-Topologische Vorbereitungen.- 1 Beispiele für Räume, Abbildungen und topologische Probleme.- 2 Homotopie.- 3 Simplizialkomplexe und Polyeder.- 4 CW-Räume.- II Fundamentalgruppe und Überlagerungen.- 5 Die Fundamentalgruppe.- 6 Überlagerungen.- III Homologietheorie.- 7 Homologiegruppen von Simplizialkomplexen.- 8 Algebraische Hilfsmittel.- 9 Homologiegruppen topologischer Räume.- 10 Homologie mit Koeffizienten.- 11 Einige Anwendungen der Homologietheorie.- 12 Homologie von Produkten.- IV Cohomologie, Dualität und Produkte.- 13 Cohomologie.- 14 Dualität in Mannigfaltigkeiten.- 15 Der Cohomologiering.- V Fortsetzung der Homotopietheorie.- 16 Homotopiegruppen.- 17 Faserungen und Homotopiegruppen.- 18 Homotopieklassifikation von Abbildungen.- Symbole.