This textbook is for a second course in survival analysis, gathering together advanced survival models, including frailty, cure, competing risks, and joint models. It includes lots of real data examples to illustrate the methods, with implementation using R software, and can be used for an advanced course on survival analysis.
Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome.
Features
This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.
Inhaltsverzeichnis
"The book provides, in a single reference, today's status of survival data modeling. Emphasis is on implementation and interpretation of the output of such models. The narrative and the technical style are nicely in balance, making the reading light and pleasant. The book includes a number of data sets, mainly from oncology, that are used to demonstrate the methodology via case studies, including details on the R and SAS programming. All chapters include a 'further reading' section, with important references for deeper digging into the subject. I highly recommended the text, not only for the applied statisticians working with time-to-event data but also for statisticians looking for a comprehensive single reference that provides an excellent overview of advanced survival modeling."
- Paul Janssen, Hasselt University
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Advanced Survival Models" und helfen Sie damit anderen bei der Kaufentscheidung.