"The main purpose of this book is to present, in quite an accessible way, the essence of multiscale analysis, a technique needed in proving Anderson localization, or exponential localization, for random Schrodinger-like operators acting in $L^2(\bold R^d)$. The treatise consists of four chapters, which are well arranged so as to clarify the logical structure of this hard technique. In the first chapter, after a brief introduction to the subject of disordered systems, the author summarizes some general facts on ergodic families of self-adjoint operators, such as the almost sure constancy of the spectrum. A convenient criterion is also given for the measurability of random operators obtained through closed forms. Then the author describes precisely two basic models to be treated in the sequel, which he names (P+A) and (DIV) respectively...." (Nariyuki Minami, Mathematical Reviews)