Der vorliegende Band "Tensorrechnung" schließt die Lücke zwischen der in der Mathematik-Grundausbildung an den Fachhochschulen und Universitäten gebotenen Vektorrechnung und den Anwendungen der Tensorrechnung in der Physik und insbesondere in der Kontinuumsmechanik. Die Tensorrechnung wird - ausgehend von den bekannten Grundlagen der Vektorrechnung für beliebige Grundsysteme - ausführlich entwickelt. Das Buch wendet sich vorrangig an Studierende der Ingenieur- und Naturwissenschaften, es wird aber auch zum Selbststudium empfohlen.
Inhaltsverzeichnis
1 Tensorielle Aspekte der Vektoralgebra.- 1.1 Vektoren.- 2 Einführung beliebiger Grundsysteme.- 2.1 Das beliebige Grundsystem.- 2.2 Operationen in Komponentendarstellung.- 3 Tensoren.- 3.1 Tensoroperationen.- 3.2 Tensoren 2. Stufe.- 3.3 Die Punkttransformation.- 3.4 Die Hauptachsentransformation.- 3.5 Tensoren k-ter Stufe.- 3.6 Der antisymmetrische Tensor 3. Stufe.- 3.7 Der Kronecker-Tensor 6. Stufe.- 4 Beliebige ortsabhängige Koordinatensysteme.- 4.1 Wechsel zwischen Koordinatensystemen.- 4.2 Gradient, Divergenz und Rotation von Tensorfeldern.- 4.3 Beispiele für die Differentiation von Tensorfeldern.- 4.4 Integralsätze.- 4.5 Eine Anwendung der Integralsätze.- 5 Lösungen und Lösungshinweise.- Literatur.